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We propose the multipoint Metropolis algorithm as an extension of the orientational-
bias Monte Carlo of Frenkel and Smit. A ratio statistics similar to that in the Metropo-
lis algorithm is introduced to maintain the detailed balance. The multipoint idea can
be applied to improve the efficiency of a general Markov chain-based Monte Carlo
algorithm. To illustrate, we describe two variations of the idea—the random-grid
Metropolis and the multipoint Hybrid Monte Carlo—and apply them to a number of
examples. @ 2001 Academic Press
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1. INTRODUCTION

Computer simulation and optimization for molecular structures and dynamics have b
of great interests to chemists, physicists, and biologists. One of the central tools usec
these endeavors is Monte Carlo. Recently, statisticians began to appreciate the importar
Monte Carlo methods and have extended many Monte Carlo techniques developed by pl
cists and structural chemists to solve a broader array of problems, e.g., those in Baye
inference, artificial intelligence, genetics, computational biology, and others. A major p
of these computational problems can be summarized abstractly into the following mat
matical setting: A system is parameterized by a vextand characterized by a probability
distributions (x), which is known up to a normalizing constant (i.e., functigr) = Zw (X)
is known, but the constait, often called the partition function, is unknown). Itis of interest
to estimate the mathematical expectation of a given fundtien i.e., the value of

(h) = /h(x)n(x) dx.
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If random sampleg, X, ..., Xy can be drawn fronr (x), one can approximate the above
integral by the average of theX; ).

Among all the methods that enable one to draw random samples from an arbitra
given distribution, those based on Markov chain theory are perhaps most widely us
The construction proposed by Metropodéisal. [13] and modified by Hastings [7], often
referred to as the Metropolis—Hastings (M—H) algorithm, is the most fundamental buildi
block for all Markov chain Monte Carlo (MCMC) algorithms. The M—H algorithm can be
implemented as follows:

e Suppose at theth iteration we have a sampke. At the ¢ + 1)st iteration, a “pertur-
bation”y of the current state is proposed. Operationally this can be achieved by draw
from a Markov transition functiofi (y | x;) (also called the proposal function).

e We letx;;; =y with probability

P min{l’ TWNT X 1Y) }
T(X)TY | Xt)

and letx;;1 = x; with probability 1— r. We callr the M—H ratio.

Theoretically, the M—H algorithm can be applied to an arbitrary unnormalized distributic
regardless of its dimension. However, in most applications, the Markov chain generatec
the M—H algorithm can be trapped indefinitely in a local mode so that the equilibrati
time of the sampler can be unacceptably long. One remedy is to enable the sampler to
larger steps. Under the M—H framework, this idea amounts to let the proposal funct
T(- | -) to make more drastic perturbations on the current state. Although this may all
the sampler to escape from certain local modes, unavoidably a more violent chaqge i
is much less likely to be accepted, which also hurts the efficiency of the algorithm. T
multipoint method introduced in this article aims at alleviating this conflict of interest.

One of the most effective means for improving equilibration time of a MCMC sampler
parallel tempering [3, 5], in which one runs in parallel several independent Markov cha
with different temperature parameters and proposes temperature swapping periodic
However, in cases where one is interested only in the simulation at a fixed temperatur
is not clear whether the improvement justifies the additional complexity and computat
of parallel tempering. The multipoint method, on the other hand, is a simple generalizat
of the Metropolis rule and is perhaps more suitable for a moderate system. Additiona
one can combine the multipoint idea with parallel tempering to design more innovati
algorithms such as evolutionary Monte Carlo [9].

The multipoint method is closely related to the “multiple-try Metropolis” (MTM) pro-
posed in [10], both of which can be viewed as generalizations of the “orientational-bi
Monte Carlo” (OBMC) method described in Frenkel and Smit [4]. In both MTM anc
OBMC, one is allowed to propose multiple independent trial samples from a propo
functionT (- | -). As a consequence, one can afford to employ a proposal tranSitibat
covers a relatively larger region in the state space. Our new method further allows
to propose multiplalependentrial points and to reuse some old proposals. These extl
features simplify the computation in MTM and extend the applicability of the multipoir
idea. In particular, we show that the method can be used to improve a hybrid Monte C
(HMC) algorithm.
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2. MULTIPOINT METROPOLIS METHOD

Inthe M—H algorithm, a new trial state is generated from the proposal transition functic
and then a decision is made on whether to accept the new state based on a likelihood
In the multipoint algorithm, we allow the algorithm to make multiple proposals and the
choose a good one among them.

Suppose the current statexisve propose candidates by sampling ~ Ti(- | X), Y2 ~
To(- [ X, Y1), ..., andyn ~ Tn(- | X, Y1, ..., ¥Yn—1). FOr briefness, we l&f1.jj=(y1. ..., ¥j)
and lety(;.y) denote the vector with the reverse order, yg.q) = (Vj, Yj-1, ..., Y1). We
suppress all the subscripts for That is, the joint sampling distribution fy.j; is written
as

T (Y1 [X) =T %) x - x T(yj | X Ya-11). 1)

with the understanding that tHg(y; | X, y[1:j—1)) are in fact different functions for different
j. Finally, we define a weight function

@ (%, Y1) = 70T (Yrajp [ )4 (%, yjy)-

It is seen thatr (X) T (y:j; | X) is a joint distribution ofx andy1.j; (but not the stationary
one). Here, function; can be any bounded, positive, asghuentially symmetritinction,
where “sequentially symmetric” means that

A (% yen) = A (Vi X)-

Again, in the remaining part of the article, we suppress all the subscripts for funations
andwj. The details of the multipoint algorithm follow.

Multipoint Metropolis Algorithm

e Drawntrial pointsy, ..., Y, according to the joint proposal distributidn as defined
in (1); computew (y[j:13, X) for j =1,...,n.

e Selecty among the trial sefy, .. ., yn} with probability proportional taw (yj.1, X),
j=1,...,n.Supposg = yx has been selected.

e Construct a “reference se, , ..., X3} by samplingxj_; from

T(- ’y[krllf X, XFkJrl:j])’

for j =k, ..., n— 1. For notational simplicity, we namg = yy_j for j =1,... k-1
andxi = x. Thus, the reference paflj, ..., x;} is like a reversal of the forward path
{y1, ..., Yn} and the two are “annealed” at the mid#le- 1 positions (like a double stranded
DNA sequence with two “sticky” ends).

e Accepty with probability

n n
Fmp = Min {1, CU(Y[j:l]» X)/Zw(xfj:l]’y)}
j=1 j=1

and reject it with probability - r,,. The quantityry, is called the multipoint Metropolis
ratio.
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FIG.1. Graphicalillustration of arandom-grid Metropolis step. Inthis case,5, k = 3.y = y; was selected
as candidate. Then we namg=y,, X; = y1, X; = X.

Figure 1 gives a cartoon illustration of the algorithm. Compared with OBMC and MTM
a new feature of our algorithm is that the midéle- 1 points are reused in the reference
set. The idea of reusing old configurations in computing Metropolis-like ratios has be
proposed earlier in [2] in a different setting.

The simplest choice of the symmetric functio i, yp:j;) = 1. Intuitively, the detailed
balance condition is maintained because the backward “reference path” compensate
forward path, and the favorable choice/a$ counterbalanced by requiring that the reference
pathx] has to pass through the starting pointn the Appendix, we give a rigorous proof
showing that the above multipoint method satisfies the “super” detailed balance conditi

When the proposal transition is sequentially symmetric, i.e.,

T (Ywj+1 | Yo) = T(¥ij0 | Yi+1),

we can choosi(X, yj;.j) = 1/ T (y:j; | X), thenthe algorithm can be simplifieda@syy;.1j,
X) «x 7 (Yyj), a form similar to the one in [4]. That is, we can selga@mong the trial set
{y1, ..., ¥n} with probability proportional tor(y;), j =1, ..., n and then accept with
probability

fmp = Min {1, Z?T(yj) Zn(x}k)}.
j=1

j=1

Note that a sequentially symmetric proposal can be derived by composing a numbe
symmetric Markov transition steps, i.e.,

T (Y |X) = Ka(y1 1Ka(y2 Y1) - - - Kn(Yn | Yn-1).

whereK; (y | x) = K;(x|y) and is a conditional probability function.

The multipoint method is quite general. At one extreme, it is entirely possible that t
transition proposal is a semi-deterministic function (see Sections 3 and 4) in which
the generated variables are correlated. An especially useful scenario is that the mul
candidates are generated by a Markov chain. For example, one may have a favorite tr:
tion functionK (y | x) which is a “cheap” approximation of the desirable transition kerne
A(y | X) (whose equilibrium distribution is). Then one can generate a few candidates fron
composingK and use the multipoint method to select among them.

At the other extreme, all the multiple trial points can be generated independently, ci
ditional onx and possibly another random variable, as in OBMC [4] and MTM [10]. Fo
example, the proposal séfi, ..., Yyn} can be independent and uniform draws from the
radiusy sphere centered at wherey is generated from a distribution independent of
X. Then, after selecting the candidatg one cannot reuse the old draws. But one car
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still implement the multipoint method by generating- 1 independent and uniformly dis-
tributed samples from the sphere centerey,;atith the same radiug. Mathematically,
the generation ofy1.n in the above procedure can be described as

TV [ % 7) =T 1% 1) Tn | X ¥),

and the acceptance—rejection decision is made conditional. arhe proposal process
described by (1) can also be generalized to allow for an additional “ancillary” vanable
i.e.,y[1n can be generated from

T (Yin ‘X, Y)=TM1l% ) T(yn | X, YiL:n-1] ¥ )

and the multipoint ratio be computed conditionaharT he proof of its correctness is similar
to that in Section A.2.

Weighted Multipoint Metropolis

Generating more candidates to choose from does not necessarily mean that we will er
“walking farther” at each iteration. Intuitively, those trial points that are close to the starti
positionx tend to have a higher acceptance probability than those points that are fart
away fromx. In order to force the chain to explore a greater area, we can add weights
the generated candidates. Those candidates farther from the starting pauieive greater
weight than those that are closendor hat is, we can define

a(X, Y:j1) = Ujo (X, yij) )

and usevin the place ofv in the multipoint algorithm previously defined. Typical choices
can beu; = j* oru; = log j, both giving increasing preference to points “farther” away
In fact, this flexibility has been reflected in the original multipoint algorithm for that we ca
chooser; freely. Expression (2) makes it explicit that we put artificially unequal weight
to the multiple candidates. Our experiences show that this weighting strategy is very us
for improving a HMC method (Section 4).

3. RANDOM-GRID METROPOLIS

As a demonstration of how one can use the multipoint strategy, we describe a mett
the random-grid Metropolis, which is useful when the state space is a Euclidean space

Random-Grid Metropolis

e Sample a distanceand a direction (unit vecto® from their proposal distributions,
respectively. Construct thecandidates as

yi=x+j-r-& j=1....n

e Selecty among the trial sefy,, ..., yn} with probability proportional tor (yj), j =
1, ..., n. Suppose the final selectionyis= yx. Then we let

Xj=y—j-r-e& forj=1...,n



832 QIN AND LIU

Y4 ¥-3 ¥-2 ¥y-1 X Yi Y2 Y3 Yu

*

* * * *
X 4 X3 X9 X1 ¥ X; X9 X3 Xy

FIG.2. lllustration of two-sided random-grid Metropolis chain. In this case, 4, k = 3.y = y; was selected
as candidate. Then we namie=ys, X", =Y, X*, = Y1, X 3 = X, X, = Y_1.

Thereforex? is equal toyk—j for j < kand tox — (k— j) -r - &for j > k.
e Accepty with probability

Mg = min{l,Zn(yj)/Zn(x]?)},
=t

j=1
and reject it with probability k- rq.

Figure 1 shows how a random-grid step is implemented. As a small variation of t
random-grid method, we can also take candidates from both sides of the random direc
which can sometimes be more efficient. More precisely, after generating &, we can
construct & candidates as

yoj=X—]j-r-g i=21...,n,

Yi=X+]j-r-8 i=1,...,n
Then, after selecting a candidatérom the candidate set, we construct the reference set
Xi=y+j-r-g

for j = 41,..., £n. A graphical illustration is given in Fig. 2.

The proposal function far can be any proper density function supported on the intervz
[0, A] (whereA can be infinite). From our experience, a uniform distribution, an exponenti
distribution, or another form of the Gamma distribution are convenient choices. In contre
the most appropriate choice of the proposal functio@feperhaps the uniform distribution
because in most applications we do not have a strong reason to prefer one direction to anc

Since only the step size and the direction are random, itis clear that the resulting candid
from the random-grid method are not mutually independent. For a better exploration of Io
landscape of the target distribution, one may want to insert a few standard metropolis s
between multipoint iterations.

4. MULTIPOINT HYBRID MONTE CARLO

4.1. Basic Hybrid Monte Carlo Algorithm

Hybrid Monte Carlo (HMC) was first proposed in [1] to deal with numerical simulatior
problems in lattice field theory. Unlike standard molecular dynamics algorithms, the g
in HMC is to sample from the Boltzmann distribution

7(q) o exp(—E(Q)).
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Here, theN-dimensional vectoq describes the system’s (positional) configuration, an
E(q) is the potential energy function.

The HMC introduces afictitioud -dimensional momentum vectpand the Hamiltonian
Hp,q) = E@Q) + %|p|2. If we can sampleq, q) jointly from 7z (p, q) oc exp(—H (p, q)),
then the resulting follows the desired Boltzmann distribution. Because a dynamical moy
of the system based on the Hamiltonian equations,

dg oH dp oH
dr  9p P, an dr  9q @:

is time-reversible, volume-preserving, and maintains the constant total energy, it leaves
joint distributions (p, q) invariant. Ideally, one can simulatp, q) by (a) drawingp from
its marginal distribution (which is Gaussian), and (b) evolving the system according to
Hamiltonian equations for a long period of time.

A popular method for simulating the Hamiltonian dynamics isléagp-frog algorithm
in which each leap-frog step is time-reversible and volume-preserving [1]. Since e:
leap-frog step is a discretization of the continuous-time Hamiltonian equations, it does
maintain a constant total energy, resulting in “nonphysical” moves. The following HM
method uses the Metropolis rejection rule to correct for the biases resulting from c
cretization.

e Generate the momentum vecie (p, ..., pn) from the standard Gaussian distri-
bution, i.e., draw

p;j ~N@©,1, forj=1,...,N.

e Aproposal, f’, d'), is generated from applyingiterations of the leap-frog algorithm
to the current stategp( q).

e Accept @', 9') withr = min[1, exp(—AH)], whereAH = H(p', q") —H(p, 9).
Note that this algorithm samplesandq jointly although we are only interesteddnVector
p can be viewed as an auxiliary variable.

4.2. Using Multipoint Rule in Hybrid Monte Carlo

As described in the previous section, thereradynamical steps implicated by a deter-
ministic scheme, e.g., a leap-frog algorithm, between any two stochastic updates of a H
algorithm. The multipoint technique can be directly applied here. Sinca thenamical
steps are “time-reversible,” it is easy to generate a “reverse” path as in the general multip
method. Since the number of dynamical stagsnfay be a large number, treating these
candidates equally as in the standard multipoint method may not be a good idea. Addit
ally, computing all thew functions can be a drag to the overall computational efficiency. ,
simple modification we apply here is to consider only the tastf thesen candidates (this
is equivalent to giving 0 weights to the beginnimg- m candidates). For example, we may
takem = n/4.

Suppose we have the configuratipg, @:) at present. Define = (pt, g;). The multipoint
HMC update for stept(+ 1) is as follows.
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Multipoint HMC Algorithm

e From the starting state we conduch leap-frog iterations to obtaiy, ..., yn.

e Select one candidate= y,_g, say, from the candidate Sgt .1, ..., Yn according
to their Boltzmann probabilities. Here9k <m — 1.

e Fromx, run k-steps of inverse leap-frog iteration (i.e., use the negated momentt
variable—p; to start the leap-frog) to obtay 1, ...,y k.

e Accepty with probability

o ind g Zim@PCH Gnomeg)
men T exp—H (Y1) [

and reject with probability % ryph.

The correctness of the algorithm can be seen from the facts that (a) the total Er{g)gy
is not affected by negating the momentum variable; (b) the leap-frog moves are volur
preserving; and (c) the leap-frog moves are “time-reversible.” That is, if we negate t
momentum variable foy, and applyn + k leap-frog steps, we will gef_x at the end.
Intuitively, using the leap-frog transition is like using a symmetric Markov chain transitio

We can add further weights to thecandidate states considered in the multipoint HMC.
That is, we can assign weighi to statesy,_m+j andy_xim—j, for j =1,...,m. The
purpose of adding weight is to give increasingly higher preference to states near the er
the leap-frog trajectory. Convenient choicesdigrare/j and logj; uj is as in Eq. (2).

An algorithm that considers multiple trial points in HMC has been proposed earlier |
Neal [14] who named it the “window” HMC. Rather than comparing only the end state
the leap-frog updates, Neal considered a comparison between the total energies of a wir
of states at the end of the trajectory and that at the beginning of the trajectory. After ¢
of the two windows is chosen, a particular state within the selected window is drawn w
probability proportional to its Boltzmann distribution. Figure 3 illustrates this algorithn
In Section 5.2, we compared Neal's method with ours for the simulation of uncoupl
oscillators.

Trajectory lengthn and number of multiple trial pointsn need to be selected be-
forehand, and kept to be fixed throughout the whole simulation. However, a new s
size € used for leap-frog iterations has to be drawn after each acceptance/rejection
cision. If both trajectory lengthm and step size are fixed, then the result will show
a periodic and circular pattern, it can also delay the convergence. See [11] for reley
discussion.

In Neal’s window algorithm, the length of the inverse trajectlig sampleduniformly
from a discrete setl, 2,...,W}, whereW is window size. Whereas in the multipoint

“reject” window “accept” window
| | | |
| | | [
1@seeD oo @ e o o 1@ eee Osecol
| | |
Y-k X Ym—k-1 1 ¥Yn-m+1 Y Yn

FIG. 3. Graphical illustration of Neal's “window” HMC.
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method, the inverse trajectory lendths equal to the number of dynamic steps beyonc
the selected candidate. The later is intuitively more appealing. Additionally, we can furtl
tune the weighting parametey to bias the sampling distribution of the candidyia favor

of the end of the trajectory.

5. EXAMPLES

5.1. Simulation from a Mixture Gaussian Distribution

Random-grid Monte Carlo is most useful for sampling from a multimodal distributio
defined on a Euclidean space because the method allows one to explore more thorot
along a randomly chosen direction. In a sense, each of the random-grid moves behave:
the conditional update in a heat-bath algorithm (or@litgbs samplein statistics literature).
We illustrate here how the random-grid method can be applied to sample from a mixt
Gaussian distribution.

Consider simulating from a two-dimensional mixture Gaussian distribution

sl (3 D)l (4 7))

whichis similar to the ones used by Gikkial. [6] and Liuet al. [10]. Compared to theirs, the
distribution shown here is more difficult to sample from by a standard Metropolis algoritt
because the mean vectors are separated by a larger distance in each dimension.

Both the standard Metropolis and the random-grid Monte Carlo methods were app!
to this example. In particular, we used the two-directional random-grid methochwitd
along each direction. The length of each step is generated from an exponential distribu
with mean 3. A total of 50,000 iterations were conducted for both the Metropolis a
the random-grid methods. Although eight candidates were considered in each iterat
the random-grid method consumed only twice as much computing time as the stanc
Metropolis. This is mainly because that the evaluation ©f) is easy.

A comparison of the two methods in terms of the histograms and autocorrelation plot:
their Monte Carlo samples is shown in Fig. 4. The left panel is for the standard Metropc
and the right panel is for the random-grid method. The histogram on the left panel shoy
unequal mass among the three modes, suggesting that the equilibration time for the algo
is very long. The two plots on the bottom panel show the autocorrelations up to lag 30
the two methods.

We also comparebhtegrated Autocorrelation Time (IADf the two methods, where the
IAT is defined a% + Zfil pj, With p; being the lag} autocorrelation of the Markov chain.
After taking computation time into account, our simulation showed that the IAT was 32
for the Metropolis algorithm, after adjusting for the computational cost (2 to 1 ratio), au
5.2 for the random-grid method. This translates to a six-fold improvement. The random-c
is still more than two-fold better than the Metropolis even if we adjust the extra cost to
to 1 ratio.

5.2. Uncoupled Oscillators

The behavior of the standard HMC algorithm for systems of uncoupled oscillators t
been analyzed in detail by Kennedy and Pendleton [8]. Neal [14] used the same examp
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FIG. 4. A comparison of the results obtained by the standard Metropolis method and that by the random-(
method. The autocorrelation functions (ACF) has been adjusted to account for unequal computational costs.
lag in the ACF represents 40 iterations for the Metropolis algorithm and 20 iterations for the random-grid meth
respectively.

study the performance of his “window” HMC method. In this example, the system contai
d uncoupled oscillators with frequencigsfor j = 1, ..., d. The potential energy function
for such a system is

1 d
E@=3) via. (3)
j=1

Thus, in the Boltzmann distribution with this energy function, eqcls independent and
distributed as a Gaussian with zero mean and standard devigtignSince the HMC
operation is invariant of translation and rotation of the coordinates, the above system
represent any multivariate Gaussian distribution.

In this example, we deliberately make the target distribution difficult to simulate k
selecting thev; between 10 to 1000, a much larger range than the one used in [14]. T
ratio vmax/ vmin, Wherevmax andvmin are the largest, and the smallest of therespectively,
is regarded as a measurement of the inherent difficulty.

From our simulation result, the multipoint HMC method proposed in this paper outpe
formed Neal's “window” HMC method, in terms of both the autocorrelation time and th
actual computation time. In most cases, the weighted multipoint method is even better t
its unweighted counterpart. The acceptance rate was tuned to be almost the same acrc
these methods.

Three methods are compared in Fig. 5: metihbdefers to Neal's “window” HMC;
methodM the multipoint HMC proposed in this paper; and mettdd&/ the multipoint
HMC with weight. The left panel shows a side-by-side box plot about the IAT values for :
cases we simulated. From this plot, we can see that the general performance raliig is
> M > N. The right panel shows a scatter plot, in which the x-axis is the IAT values f
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autocorrelation (IAT) differences

—_ .
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FIG.5. Comparison of autocorrelation for methbldM andMW .

methodM. They-axis corresponds to the difference in IAT value, between methNaaisd
M, M andMW,, respectively. The fan shape of the scatter plot shows that the improvem
increases when the IAT score is larger.

In order to make sure that the total leap-frog steps in all three methods are compar
we set trajectory length to be 45 for methiddandMW , 50 for method\. Window size is
20. Step size is sampled uniformly from interval (/vmax)- The dimension of the system
was taken to be 200.

Another experiment was performed for a system of 1600-dimensional uncoupled os
lators. We compared four different methods: the standard HMC, Neal's “window” HM(
multipoint HMC, and multipoint HMC with weight, corresponding to four panels from toj
to bottom. We also tested different settings of two adjustable parameters: one is the nur
of leap-frog steps, which were set at 100, 50, and 30, respectively; the other parame
controls maximum length of a single leap-frog move, denoted,gs which were set at
.75, 1.0, 1.5, and 2.0. The leap-frog step length is sampled uniformly froeg40 vimax)-
We summarized the computation times (for 50,000 iterations under each setting), ac
tance rates, and the IATs in Table I. It is seen from the table that one can obtain a \
efficient setting (IAT=1.11) by step size, number of steps, and the weights in the mul
point selection.

6. DISCUSSION

In this paper, we propose the multipoint method as a novel extension of the orientatiol
bias Monte Carlo, which can be used to alleviate the local-mode trapping problems
countered in all the Metropolis-type algorithms. In the new method, multiple correlat
candidates are proposed simultaneously, from which one is selected judiciously to com
with the current configuration. To encourage the acceptance of those candidates tha
“farther” away from the current state, a weight function can be used to emphasize e
candidate’s importance.

Two applications of the general multipoint idea, the random-grid method and the m
tipoint HMC, are described. In the random-grid method, the multiple candidates lie w
equal spacing along a randomly chosen direction. In multipoint HMC, the multiple can
dates are just the points near the end of a leap-frog trajectory. It has been shown rec
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TABLE |
Comparison of Simulation Results

100 50 30
n

€max t AR IAT t AR IAT t AR IAT

Standard HMC

0.75 92.9 88.0 1235 520 865 2097 311 882 2758
1.0 89.7 81.0 735 521 794 1249 311 76,5 23.75
1.5 91.7 559 1161 514 533 19.35 31.0 533 2250
2.0 92.7 40.0 11.19 520 410 1966 31.6 420 28.07

Neal’s “window” HMC

0.75 108.4 95.6 850 57.7 96.2 1465 325 947 2731
1.0 107.0 88.0 8.32 592 905 1386 326 92.7 20.90
15 107.0 72.2 573 585 749 1207 326 688 20.90
2.0 108.2 53.7 731 56.7 514 1367 329 514 19.67

Multipoint HMC

0.75 1123 96.9 1057 64.7 96.7 2146 349 953 23.50
1.0 113.04 94.6 504 630 937 17.15 337 917 23.30
15 114.7 78.3 432 634 760 1678 354 726 22.80
2.0 116.5 61.2 761 633 570 1686 354 545 2338

Weighted Multipoint HMC

0.75 108.8 96.5 9.20 582 944 2063 338 947 2483
1.0 107.2 87.4 111 578 912 1474 336 933 19.79
15 107.2 725 6.76 581 744 1605 336 714 2357
2.0 107.6 53.7 325 575 527 986 343 552 2373

that the N@e—Hoover chain method [12] generally outperforms the HMC in simulatin
Hamiltonian dynamics. It is thus desirable to apply the multipoint idea to this more a
vanced technique.

The multipoint is a general methodology to improve the local search capability of
MCMC sampler and can be combined with various other powerful methods, such as par:
tempering [5] and adaptive directional sampling [10], to produce more efficient Monte Ca
algorithms [9].

APPENDIX: PROOFS OF THE DETAILED BALANCE

A.1l. The General Multipoint Method

Let A(y | X) be the actual transition function and kt =y be the candidate chosen
from the multiple trial points. As described in Section 2, the backward “reference se
is denoted agxi, ..., X}, wherexj =yi_j for j =1,... . k—1; xg = x; and x’,; ~
T 1y, Xf“l:u) forl =k+1,...,n. With these notations, we want to prove the “super-
detailed balance”

TOO)AY 1 X) =7 () AX T Y).

The detailed balance follows by summing up all possible valu&srothe above equation.
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Note that the derivation of the actual transition functidg(y | X) involves integrating
over all the remaining “reference pointgyix—1j, Yik+1n andxfk 1) More precisely, we
have

o (Y, X) min{l ZT:lw(y[jil]’ X)}
)

ZT:lw(Y[j:l]’ X 7 ZT:lw(kajzl]»Y)

X T (X1 | Yiear X) dYpering GG 1 -1 (A1)

= [+ [700T (e [ )7 T (i [)405. )

700 Ay | X) = / / 2 OOT (Ypny 1 X)

. 1 1
X min y "
{ ZT:l (Y1, X) Z?zl a)(x“ AP y) }
X dY(k+1n] dxfml;n] dyjrk-1)- (A.2)

Here functioni is any positive and “sequentially symmetric” function, i.e.,
(Ys Xrag) = A (X ¥)-

To see that expression (A.2) is symmetrixiandy, we simply exchange the notations
of x andy, andxj andyj, respectively. Becauseis sequentially symmetric, we have

MY X)) = »(Keapr Y) = A(X Vi) -

Thus, expression (A.2) does not change its value after the above notational exchange.
concludes the proof of the super-detailed balance condition

(X)) Ac(X,Y) = (Y) Ac(Y, X).

A.2. Random-Grid Metropolis

For this algorithm, we have

7 (y) . ZT 17 (Y))
T(X) A(X, ) = n(x)/ 9N =r————ming 1, —— dr
“ LT { ") + L (y))
7(y) . Yl X4 jr,x)
= 1

. l 1
= n(X)/g(r)ﬂ(Y) mln{ZT—l”(x+ jir0 Yy —jry) } o

The above expressionis apparently symmetricndy, thus we proved that(x) A (X, y) =
7 (y) Ak(Y, X), which is the detailed balance condition.
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For two-sided random-grid Metropolis, the proof is very similar,

. Ly £ jr)
7 (X) Ac(X, Y) =n(x)/g(r)% min< 1, % dr
i j
y) 1 >y (X Ejr) dr

T
z”(x)/g(r)zjn(xijm Ha b ST EST

1 1
oy mXEjr) 3wy £ jr)

=n(><)/g(r)n(y)min

The above expression is symmetriciandy; the detailed balance is proved.
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